

B.Sc.	Semester - I	Credits: 4
Course: 1	Inorganic and Physical Chemistry	Hrs/Wk: 4

Course outcomes:

- Understand the basic concepts of p-block elements
- Explain the difference between solid, liquid and gases in terms of intermolecular interactions.
- Apply the concepts of gas equations, pH and electrolytes while studying other chemistry courses.

B.Sc.	Semester - I	Credits: 1
Course: 1(L)	Analysis of SALT MIXTURE LAB	Hrs/Wk: 2

LABORATORY COURSE -I

30hrs (2 h / w)

Qualitative inorganic analysis (Minimum of Six mixtures should be analyzed) 50 M

Course outcomes:

- Understand the basic concepts of qualitative analysis of inorganic mixture
- Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- Apply the concepts of common ion effect, solubility product and concepts related to qualitative analysis

B.Sc.	Semester - II	Credits: 4	
Course: 2	Organic & General Chemistry	Hrs/Wk: 4	

Course outcomes:

- Understand and explain the differential behavior of organic compounds based on fundamental concepts learnt.
- Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved
- Learn and identify many organic reaction mechanism including Free Radical Substitution, Electrophonic Addition and Electrophonic Aromatic Substitution.
- Correlateanddescribethestereochemical properties of organic compounds and reactions.

B.Sc.	Semester - II	Credits: 1	
Course: 2(L)	Volumetric Analysis Lab	Hrs/Wk: 2	

Course outcomes:

- Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- Understand and explain the volumetric analysis based on fundamental concepts learnt in ionic equilibria
- Learn and identify the concepts of a standard solutions, primary and secondary standards
- Facilitate the learner to make solutions of various molar concentrations.
- This may include: The concept of the mole; Converting moles to grams; Converting grams to moles; Defining concentration; Dilution of Solutions; Making different molar concentrations.

B.Sc.	Semester - III	Credits: 4	
Course: 3	Organic chemistry & Spectroscopy	Hrs/Wk: 4	

Course outcomes:

- Understand preparation, properties and reactions of haloalkanes, haloarenes and oxygen containing functional groups.
- Use the synthetic chemistry learnt in this course to do functional group transformations.
- To propose plausible mechanisms for any relevant reaction

B.Sc.	Semester - III	Credits: 1
Course: 3(L)	Organic preparations and IR Spectral Analysis Lab	Hrs/Wk: 2

Course outcomes:

On the completion of the course, the student will be able to do the following:

- 1. how to use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- 2. how to calculate limiting reagent, theoretical yield, and percent yield
- **3.** how to engage in safe laboratory practices by handling laboratory glassware, equipment, and chemical reagents appropriately
- **4.** how to dispose of chemicals in a safe and responsible manner
- **5.** how to perform common laboratory techniques including reflux, distillation, recrystallization, vacuum filtration.
- **6.** how to create and carry out work up and separation procedures
- 7. how to critically evaluate data collected to determine the identity, purity, and percent yield of products and to summarize findings in writing in a clear and concise manner

B.Sc.	Semester - IV	Credits: 4
Course: 4	Inorganic, Organic and Physical Chemistry	Hrs/Wk: 4

Course outcomes:

- To learn about the laws of absorption of light energy by molecules and subsequent photochemical reactions.
- To understand the concept of quantum efficiency and mechanisms of photochemical reactions.

B.Sc.	Semester - IV	Credits: 1
Course: 4(L)	Organic Qualitative analysis Lab	Hrs/Wk: 2

Course outcomes:

- Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- Determine melting and boiling points of organic compounds
- Understand Application of concepts of different organic reactions studied in theory part of organic chemistry

	B.Sc.	Semester - IV	Credits: 4	
Ī	Course: 5	Inorganic & Physical Chemistry	Hrs/Wk: 4	

Course outcomes:

- Understand concepts of boundary conditions and quantization, probability distribution, most probable values, uncertainty and expectation values
- Application Of Quantization To Spectroscopy.
- Various types of spectra and their use in structure determination.

B.Sc.	Semester - IV	Credits: 1
Course: 5(L)	Conductometric and Potentiometric Titrimetry Lab	Hrs/Wk: 2

Course outcomes:

- Use glassware, equipment and chemicals and follow experimental procedures in the laboratory
- Apply concepts of electrochemistry in experiments
- Be familiar with electroanalytical methods and techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte