

V.V.GIRI GOVT. KALASALA

DUMPAGADAPA, W.G.Dist., (via) AKIVIDU - 534 235

Accredited by NAAC @ B+

College Code : AKNU323

Dr. K. SUJATHA, M.Sc., Ph.D.,
PRINCIPAL
Cell : 9440230091

E-mail : gcdumpagadapa.jkc@gmail.com
Website : www.dumpagadapa.ac.in

DEPARTMENT OF PHYSICS

Programme Outcomes (POs)

POS	DESCRIPTION
PO1	Critical Thinking: Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.
PO2	Effective Communication: Speak, read, write and listen clearly in person and through electronic media in English and in one Indian language, and make meaning of the world by connecting people, ideas, books, media and technology.
PO3	Social Interaction: Elicit views of others, mediate disagreements and help reach conclusions in group settings.
PO4	Effective Citizenship: Demonstrate empathetic social concern and equity centred national development, and the ability to act with an informed awareness of issues and participate in civic life through volunteering.
PO5	Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.
PO6	Environment and Sustainability: Understand the issues of environmental contexts and sustainable development.
PO7	Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes
PO8	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PRINCIPAL

V.V. Giri Government Kalasala
DUMPAGADAPA

V.V.GIRI GOVT. KALASALA

DUMPAGADAPA, W.G.Dist., (via) AKIVIDU - 534 235

Accredited by NAAC @ B+

College Code : AKNU323

Dr. K. SUJATHA, M.Sc., Ph.D.,
PRINCIPAL
Cell : 9440230091

E-mail : gcdumpagadapa.jkc@gmail.com
Website : www.dumpagadapa.ac.in

PHYSICS DEPARTMENT

PROGRAMME SPECIFIC OUTCOMES (PSO'S)

PSO-1	students are expected to acquire knowledge in physics including the major premises of classical mechanics, quantum mechanics, electromagnetic theory, electronics, optics, special theory of relativity and modern physics.
PSO-2	students are also expected to develop written and oral communication skills in communicating physics related topics

PHYSICS DEPARTMENT

COURSE OUTCOMES (CO'S)

SEMESTER – 1:

COURSE 1: ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES

1. Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures.
2. To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations
3. To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life.
4. Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.

5 To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats, vulnerabilities, and countermeasures.

COURSE 2: ADVANCES IN MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES

1. Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems.
2. To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations.
3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials.
3. Understand the principles and techniques used in computer-aided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nanosensors. Explore the effects of chemical pollutants on ecosystems and human health.
4. Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.

5 Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite).

SEMESTER – 2:

COURSE 3: MECHANICS AND PROPERTIES OF MATTER

1. Students will be able to understand and apply the concepts of scalar and vector fields, calculate the gradient of a scalar field, determine the divergence and curl of a vector field.
2. Students will be able to apply the laws of motion, solve equations of motion for variable mass systems
3. Students will be able to define a rigid body and comprehend rotational kinematic relations, derive equations of motion for rotating bodies, analyze the precession of a top and gyroscope, understand the precession of the equinoxes
4. Students will be able to define central forces and provide examples, understand the characteristics and conservative nature of central forces, derive equations of motion under central forces.
5. Students will be able to differentiate between Galilean relativity and the concept of absolute frames, comprehend the postulates of the special theory of relativity, apply Lorentz transformations, understand and solve problems

COURSE 4: WAVES AND OSCILLATIONS

1. To describe the basic characteristics of waves such as frequency, wavelength, amplitude, period, and speed.
2. To utilize mathematical relationships related to wave characteristics.
3. To compare particle motion and wave motion in different types of waves.
4. To distinguish between Longitudinal and Transverse waves.
5. To get the knowledge about how to construct and analysis the square waves, saw tooth waves, etc. from Fourier analysis

SEMESTER – 3:

COURSE 5: OPTICS

1. Explain about the different aberrations in lenses and discuss the methods of minimizing them
2. Understand the phenomenon of interference of light and its formation in (i) Lloyd's single mirror due to division of wave front and (ii) Thin films, Newton's rings and Michelson interferometer due to division of amplitude.
3. Distinguish between Fresnel's diffraction and Fraunhofer diffraction and observe the diffraction patterns in the case of single slit and the diffraction grating and to describe the construction and working of zone plate and make the comparison of zone plate with convex lens
4. Explain the various methods of production of plane, circularly and polarized light and their detection and the concept of optical activity.
5. Comprehend the basic principle of laser, the working of He-Ne laser and Ruby lasers and their applications in different fields. To understand the basic principles of fibre optic communication and explore the field of Holography and Nonlinear optics and their applications.

COURSE 6: HEAT AND THERMODYNAMICS

1. Understand the basic aspects of kinetic theory of gases, Maxwell-Boltzmann distribution law, equipartition of energies, mean free path of molecular collisions and the transport phenomenon in ideal gases
2. Gain knowledge on the basic concepts of thermodynamics, the first and the second law of thermodynamics, the basic principles of refrigeration, the concept of entropy, the thermodynamic potentials and their physical interpretations. Understand the working of Carnot's ideal heat engine, Carnot cycle and its efficiency
3. Develop critical understanding of concept of Thermodynamic potentials, the formulation of Maxwell's equations and its applications.
4. Differentiate between principles and methods to produce low temperature, liquefy air, and understand the practical applications of substances at low temperatures.
5. Examine the nature of black body radiations and the basic theories

COURSE 7: ELECTRONIC DEVICES AND CIRCUITS

1. Understand the behavior of P-N junction diodes in forward and reverse bias conditions and analyze the impact of junction capacitance on diode characteristics.
2. Analyze and compare the characteristics and operation of different BJT configurations (CB, CE, and CC) and demonstrate proficiency in biasing techniques.
3. Comprehend the operation and characteristics of FETs, including JFETs and MOSFETs, and explain the working principles and characteristics of UJTs.
4. Describe the operation and applications of various photoelectric devices such as LEDs, photo diodes, phototransistors, and LDRs.
5. Understand the operation of rectifiers (half-wave, full-wave, and bridge), analyze the ripple factor and efficiency, and demonstrate knowledge of different filter types and three-terminal voltage regulators

COURSE 8: ANALOG AND DIGITAL ELECTRONICS

1. Understand Principles and Working of Operational Amplifier
2. Apply their knowledge on OP-Amp in different Applications
3. To understand the number systems, Binary codes and Complements.
4. To understand the Boolean algebra and simplification of Boolean expressions.
5. To analyze logic processes and implement logical operations using combinational logic circuits.
6. To understand the concepts of sequential circuits and to analyze sequential systems in terms of state machines

SEMESTER – 4:

COURSE 9: ELECTRICITY AND MAGNETISM

1. Understand the Gauss law and its application to obtain electric field in different cases and formulate the relationship between electric displacement vector, electric polarization, Susceptibility, Permittivity and Dielectric constant.
2. To learn the methods used to solve problems using loop analysis, Nodal analysis, Thevenin's theorem, Norton's theorem, and the Superposition theorem
3. Distinguish between the magnetic effect of electric current and electromagnetic induction and apply the related laws in appropriate circumstances.
4. Understand Biot and Savart's law and Ampere's circuital law to describe and explain the generation of magnetic fields by electrical currents.
5. Develop an understanding on the unification of electric, and magnetic fields and Maxwell's equations governing electromagnetic waves.
6. Phenomenon of resonance in LCR AC-circuits, sharpness of resonance, Q- factor, Power factor and the comparative study of series and parallel resonant circuits

COURSE 10: MODERN PHYSICS

1. Understand the principles of atomic structure and spectroscopy.
2. Understand the principles of molecular structure and spectroscopy
3. Develop critical understanding of concept of Matter waves and Uncertainty principle.
4. Get familiarized with the principles of quantum mechanics and the formulation of Schrodinger wave equation and its applications.
5. Increase the awareness and appreciation of superconductors and their practical applications

COURSE 11: INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

1. know about high energy particles and their applications which prepares them for further study and research in elciirap physics
2. Students can explain important concepts on nucleon-nucleon interaction, such as its short-range, spin dependence, isospin, and tensors.
3. Students can show the potential shapes from nucleon nucleon interactions.
4. Students can explain the single particle model, its strengths, and weaknesses
5. Students can explain magic numbers based on this model

SEMESTER – 5:

COURSE 12: APPLICATIONS OF ELECTRICITY AND MAGNETISM

1. Identify various components present in Electricity& Electronics Laboratory.
2. Acquire a critical knowledge of each component and its utility (like resistors, capacitors, inductors, power sources etc.).
3. Demonstrate skills of constructing simple electronic circuits consisting of basic circuit elements.
4. Understand the need & Functionality of various DC & AC Power sources.
5. Comprehend the design, applications and practices of various electrical & Electronic devices and also their trouble shooting.

COURSE 13: ELECTRONIC INSTRUMENTATION

1. Identify various facilities required to set up a basic Instrumentation Laboratory.
2. Acquire a critical knowledge of various Electrical Instruments used in the Laboratory.
3. Demonstrate skills of using instruments like CRO, Function Generator, Multimeter etc. through hands on experience.
4. Understand the Principle and operation of different display devices used in the display systems and different transducers
5. Comprehend the applications of various biomedical instruments in daily life like B.P. meter, ECG, Pulse oximeter etc. and know the handling procedures with safety and security.

COURSE 14: OPTICAL IMAGING AND PHOTOGRAPHY

1. Identify the different types of cameras and camera lenses according to different purposes.
2. Identify and understand the focal length of the different types of lenses
3. Acquire a critical knowledge on natural and artificial sources of light and their application in photography.
4. Demonstrate skills of camera usage especially Digital Cameras. To understand the various Image development and editing techniques.
5. Comprehend the concept of different types of common shooting techniques.

COURSE 15: SOLAR ENERGY AND ITS APPLICATIONS

1. Understand Sun structure, forms of energy coming from the Sun and its measurement.
2. Acquire a critical knowledge on the working of thermal and photovoltaic collectors.
3. Demonstrate skills related to callus culture through hands on experience
4. Understand testing procedures and fault analysis of thermal collectors and PV modules.
5. Comprehend applications of thermal collectors and PV modules